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POTENTIAL THEORY OF RADIATION
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//

Chicago, Illinois

ABSTRACT

This study aims to develop a new theoretical method by which the structure of a

radiation field can be predicted by a radiation potential theory, similar to a classical

potential theory. The introduction of _ scalar potential is justified on the grounds that

the spectral intensity vector is irrotational. The vector is also solenoidal in the limits of

a radiation field in complete radiative equilibrium or in a vacuum. This method provides

an exact, elliptic type equation that will upgrade the accuracy and the e_ciency of the

current CFD programs required for the prediction of radiation and flow fields.

A number of interestingresultsemerge from the present study. First,a steady state

radiation fieldexhibits an _opticallymodulated inversesquare law" distributioncharacter.

Secondly, the unsteady radiation fieldisstructured with two conjugate scalarpotentials.

Each isgoverned by a Klein-Gordon equation with a frictionalforce and a restoringforce.

This steady potential fieldstructure and the propagation of radiation potentialsare con-

sistent with the well known resultsof classicalelectromagnetic theory. The study also

recommends the extension of the radiation potential theory for spray combustion and

hypersonic flow.
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1. INTRODUCTION

Thermal radiation plays an important role in the broad area of engineering and sci-

entific applications involving high temperature flow processes. _ high performance rocket

engines _, industrial boilers and furnaces, as well as in many astrophysical flow fields 2, the

radiative tra._lsfer frequently makes a dominant contribution to the energy redistribution,

ma_s, and the momentum transfer in the participating media.

Recently, an assessment of the impact of radiation in rocket engine performance was

conducted by this writer s . It was concluded that the radiative heat loss and the en-

hancement of the burning rate of droplets by radiation can significantly affect the overall

performance of low-intermediate en_halpy engines. The results of this preliminary study

were brought to the attention of the research community of liquid propulsion technology.

S_absequently, the JANNAF workshop 4 on "Radiation effect on flow characteristic in com-

bustion chambers" was conducted to indentify the problem areas that could have potential

impacts on rocket engine hardware design, performance, life cycles thermal material fa-t

tigue, and reliability as well as the radiative modulation on spray flow field behavior and

combustion instability.

The present study is the continuation of the radiation research which aims to promote

a state-of-the-art understanding of the phenomena and to upgrade the predictive capability

as well as tile accuracy of Computational Fluid Dynamics (CFD) codes with radiative heat

transfer.

The specific goals of this study axe (1) to establish a theoretical link between two

principal theories of radiation, electromagnetic (EM) theory vs. radiative transfer (RT)

theory, and (2) to develop a unified theoretical methodology that can be incorporated in

a complztational alogrithm and a grid structure similar to those of the participating fluid.
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The firstproblem treated is a fundamental issue of establishinga unified view of

radiationby examining the structuresof the radiation fieldpredicted by two rivaltheories;

the E;M and RT models.

The most remarkable findingsthat emerged from thisstudy are (i) the radiation field

intensityvector is irrotationaland therefore the fieldIvector isderivable from a scalax

potential,(2) a steady state fieldstructure predicted by RT theory obeys an elliptictype

equation inmuch the same manner a.san electro-magnetic staticfieldand (3) a non-steady

:_diative fieldisgoverned by a wave equation which has the same general features of an

electro-magnetic fieldcharacterized by the Maxwell equation.

The second problem in thisstudy isthe establishment of an exact radiation poten-

tialequation for a radiation modulated Computational Fluid Dynamics program. This

study is further motivated by the fact that the radiation equations currently adopted in

the majority of the Computational Fluid Dynamics (CFD) approaches axe approximate

equationsS; e.g.,Two-Flux model, Six-Flux model, discrete-ordinateor zonal method. The

accuracy of these equations in general isnot compatible with that of the conservation laws

and associated submodels which axe more sophisticated in the process description and

.v,,.athematicalcharacterization; e.g.,k-¢ model, combustion-turbulence interactionand

spray-droplet models s.

Since the equation governing the radiation potential in the present theory isof an el-

liptictype, a numerical algorithm and grid net work similar to those of the Navier-Stokes

equations, or turbulent flow conservation laws can be adopted forthe simultaneous predic-

tion of the radiation and flow field. These advantages facilitate computational efficiency

and accuracy.

The potential theory serves to provide a new physical perception and an useful
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methodology toward the undemtanding of radiation processes in high temperature flow

phenomena. It also provides a gauge for the comparative assessment of the validity and

limitation of the classical electromagnetic theory and the phenomenological radiative trans-

fer approach.

This writer recommends that the steady state potential theory be implemented for

the prediction of the combustion flow field in a selected liquid rocket combustion chamber,

such as TRW'_ variable thrust engine, to test the viability of the present method. It is also

suggested that this theory be extended to treat the interaction of radiation with droplets

and particles in a spray combustion environment.

Additionally, spontaneous or non-steady radiation processes in combustion environ-

ments may be examined to assess the radiation induced ignition, vaporization and corn-

bustion in advanced propulsion systems.

2. BASIC PROPERTIES OF SPECTRAL INTENSITY VECTOR AND RA-

DIATION POTENTIAL

by

The radiative transfer equation r (RTE) which governs the spectral intensity is given

1 OIv

o--T+ v ._zv= _v(sv- Iv) (i)

where c is the speed of light in a vacuum, Iv is the spectral intensity of radiation in

the frequency interval u and u + du, _ is the volumetric extinction, which is the sum of

the absorption coefficient Kv and scattering coefficient a_., $ is the unit propagation vector

and .% is the sum of emitted and in-scattered radiation given by

×//xv(_'-__, _'-_,)zv,(_')an'_,'
(:)
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in which _v is the emission coefficient, X,, is the scattering function and t2 is a solid

angle.

2.1 Irrotationality of Spectral Intensity Vector at Steady State

The spectral intensity vector is defined a_ the vector which has the magnitude equal to

the spectral intensity I,, and the direction coincides with that of the propagation of a ray

of light. The spectral intensity vector at a steady state can be shown to be "irrotational"

by the following mathematical procedure.

By a simple quadrature the solution of Eq.(1). is given by

l,,=Ioexp(- f._iB,,"'_')+ f B,,S,,exp(- f_B,,'g"'a'_)d'd"_'
(3)

Note that Eqn (3) is an intergral equation if Sv contains the scattering term which

is represented by the third term on the right hand side of Eq.(2). In order to show the

i.-rotationality of the spectral intensity vector, the curl of IvS must vanish.

V × (I,/_) = {Ivo(-3v_)exp((- _: 3_,_" dF')

The irrotationality of a spectral intensity vector allows one to introduce a "radiation

potential _b_" from which the spectral intensity vector can be calculated as follows

= (5)

Additionally, a ray of light propagate, in the direction normal to an equipotentia.l

_Jr."ace, as ._hown in the following.
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Since$ is a unit vector, the magnitude of the spectral density vector Iv is given by

(6)

Tb.us from Eq.(5), the unit propagation vector $ is

= _ (7)
Iv •

Hence the propagation vector coincides with the unit vector, _, normal to an equipo-

tential surface.

By substituting (5) into (1) one finds that the radiation potential ¢,, obeys the fol-

Io_,ing _Radiation Potential Equation" (RPE)

(s)

The structure of a radiation field and spectral intensity vector can be predicted by

the solution of Eq.(8). A genera] solution of Eq.(8) will be discussed in section 3.

:_.2 Solenoidal Characteristics of Spectral Intensity Vector for Two Limiting

Cases

An observation of Eq.(1) suggests that when the right hand side of the equation

vanishes, the spectral intensity vector is solenoidal or divergent free, providing that the

radiation is independent of time. This special case corresponds to (1)a complete radiative

_quilibrium, and (2) non-participating media i.e. _v -" 0 including a vacuum space.

In the special cases listed above, the radiation potential Cv satisfies the Laplace equa-

V2¢_ = 0
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Thus the determination of the distribution of the spectral intensity vector for these

limited cases is equivalent to the boundary value problem of a "Laplace _ potential field.

Principle tools and the results of classical potential theories (such as the method of image,

conforma[ mapping, as well as Green functions for Dirichlet and Neumaan boundary value

problems) can be used with or without modification for the prediction of the flow coupled

or decoupled radiation field problems.

3. POTENTIAL THEORY OF STEADY STATE RADIATION

The determination of a radiation intensity in a domain bounded internally or exter-

nally by a physical surface is reduced to an appropriate boundary value problem of RPE,

Eq.(8).

A general solution of Eq.(8), _opticaUy modulated inverse square law", is discussed in

she following section.

3.1 Optically Modulated Inverse Square Law

In order to determine the radiation field one has to predict/'L, simultaneously with the

conservation laws of a flow field because the source term Sv appearing on the right hand

side of Eq.(8) depends , in general, on the properties of a gas flow field and radiation.

In the following analysis, however, the Sv will be treated as a source term so that the

formal solution of Eq.(8) can be expressed in an internal form which contains 5',, in an

in ',er grand.

• The general solution is first expressed by the method of potential splitting as follows

_¢v = exp{- f[_v_' .d_'} V_2v (9)
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Subsequently by substituting (9) into (8) one obtains

_7_&v = exp ;9_'-d_' _S_ (I0)

o

Thus a particular solution of Eq.(10) is what may be termed as an ``optically retarded

inverse square law potential" given by

r;'h_. _i,ectral intensity vector is obtained by substituting Eq.(ll) into (9) as follows

t._ _ _,12 exp - BvT' . d'/" dV' (12)

Observation of Eq.(2) suggests that the intensity decay pattern has two primary char-

acteristics; inverse square and exponential decay in source strength due to an opacity

factor. This decay pattern is one of the basic characteristics of the radiation heat transfer

and will be referred to as "optically modulated inverse square law".

3.2 Steady State Radiation Potential Solution

A general solution satisfying a prescribed potential and its normal derivative at a

physical boundary shown in Fig.1 can be constructed from the solution of an associated

potential ,].,_.. Since ,/'v satisfies the Poisson equation, the general solution is given by the

.%llowing ct_sical expression

..+-
On !7 -_old_o

(13)
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where _(f0) and a_(ro) is the value of the potential and its normal derivative at e0,On

located on the boundary. The numerical values of _ are related with those of _ as

follows

On (Fo) = --lira g. V_v = _lira_ g .exp _3v_' • dF' V¢,,
;" r° _'_r° o

Thus the numerical value of _ at r - r o is equal to that of 00--9-#;i.e.

a¢,,(_o) a¢,,(_o)
m

On On

The numerical values of _b,, (f0) must be calculated from the prescribed value of Cv(_0)

by integrating Eq.(9) as follows

,_v(_)=¢v(-_o,o)+f_: exp(f _,,_' • ,_')dCv (14)
,o

where eo,oisa referencepoint on the wall.

An additional step is required to determine the value of _b,,(f'o) in terms of _b,,(fo).

Firstly, Eq.(14) will be specialized to the boundary by replacing f by _'0, i.e.

Cu(?o) - Ov(Fo,o) + exp(AldCv (1S)
o,@

where

,X= Zv_'" aV'o
o,@

Since the distribution of a potential is prescribed an function $,, i.e.

(16)

¢v = cv(A)

Finally, by subsituting (17) into (16) one obtains

_P_,('ro) = ¢;v(Fo,o) + e"_f(A)dA
o,o

(18)



where

/(A) = d¢......_v
dA =

r r o

The spectral intensity vector is derived from Eqs.(9) and (13) a_ follows

where

I_'_=WP":- f/f _'sv(F'),T,-, ([-_' ),= _=_2 exp _v'd" . dF" "d'dV'
\dTo

(/;' )_- l___oi= exp _". _' _oa_ (19)
" 0

0

!

s' = _' - _' (20)

S_, = z, - Xo, (21)

v/zi , -
and ¢'v(eO) is given by Eq.(18).

In general, the method of Green functions can be used to predict the solution cor-

r-_ponding to the boundary value problem with a prescribed normal derivative of the

radiation potential. For instance, the solution with a prescribed inhomogeneous Neumann

boundary condition is given by

(_/.fo)a¢_,(,o) _;+ffUGv _n exp(- l_v_".d'f")dCo (22)

where
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The Green function G satisfies the following equation

= (24)

and homogeneous Dirichlet condition i.e. G(_o/_ _) = 0

3.3 Structural Equivalence Between the Radiation Potential Theory and the

Electro-magneto Static Theory

The fact that the radiative potential equation Eq.(8a) and (8b) is an elliptic type

suggests the structural similarity between the radiation field predicted by the Radiation

Potential Theory, and the electro-magnetic static field which is governed by the Laplace

or the Poisson equation in electromagnetic theory. However, it must be pointed out that

the radiation potential ¢v and spectral intensity vector Iv5 are not the same physical

quantities as the electro-magnetic static potential and electro-magnetic intensity. Hence,

complete equivalence between the two theories will require the knowledge of the functional

relationship between those of the electromagnetic properties and those of the radiation

field. This issue will be discussed further in section 4.

4. POTENTIAL THEORY OF NON-STEADY RADIATION

Unsteady radiation phenomena involve the propagation and interaction of light with

matter in a participating fluid. The objective of this section is to develop a hyperbolic type

equation that governs what may be termed a _conjugate spectral intensity _. The proposed

formulation of a _Radiation Wave Equation" exhibits another interesting insight into the

structural equivalence between the radiative transfer and electromagnetic theories.

4.1 Conjugate Spectral Intensities
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The radiative transfer equation Eq.(t) does not remaia inv_riartt under the inverse

transformation of the propagation vector $. Thus, it is appropriate to define two indepen-

dent spectral intensities; I_+ and I_ which satisfy the following pair of equations.

F a-T± $" vz2 = #_(s_- z2) (2s)

The equatioa governing [_ is the radiative transfer equation with the propagation

vector being equal to 5, whereas the conjugate equation governing I_" ha_ a propagation

vector of-5.

Following a mathematical proof similar to that which was presented in section 2.1,

one can show that the conjugate spectral intensity vectors are irrotational and therefore

derivable from two conjugate radiation potentials i.e.

z2s= v_* (26)

Substitution of Eq.(26) into (2,5) gives

(27)

where L ± are first order vectorial operators

L + _ a
ca, :i: _7 + #,,._

Two vectors + +L ¢,, can be decomposed into two components as follows

(28)

-± ±
L Cv =V¢ ;±+v x W + (29)

Where _- and W+ are scalar and vector potentials respectively. Two conjugate scalar

potentials _b_ are governed by the following Poisson equation

_2 :t=_ = _vs,, (3o!
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whereas the vectorialpotential functions obey the following homogeneous vectorialequa-

tion with repeated curl operators.

VxVxW+=0 (31)

The absence of the source term in Eq.(31) is demonstrated, initially, by applying a

cur[ operator in Eq.(29), The result is

(32)

Secondly, the irrotationality of/.,+¢_ is proved by showing that the first and third terms

appearing on the right hand side of Eq.(32) vanish. The proof is shown in the following

rv × (_¢_)= v × (_ ry_'.d_')= _× r2,- 0 (33)

In order to establish the structural equivalenc_ between the radiative transfer and

electromagnetic theory, one has to demonstrate the similarityin the type of the partial

differentialoperations for the conjugate radiation potentials and the electromagnetic po-

tentials.This isdiscussed in the next subsection.

4.2 Conjugate Radiative Wave Equations: Klein-Gorden Equations

According to the irrotational characteristcis of/.,+_b_, one expresses

By applying the vectorial conjugate operator to Eq.(34), one obtains

L_:•L_¢_ =L _ •v_o_ (35)
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The above equations, (35), are rewritten into two components explicitly _ follows

1 = + 2#, a¢+_acv 2 +
V¢_,+

c: at 2 c at

t a=¢j v=¢7 +2#va¢2
c z at: c at

_c9

so

+ (#_+ _. v#_)¢; = (;_ + #,,j). v_;- + #vs,, (3_)

where ¢_ are given by

_- _.[ dV' + ,/.,,,(,'o)a,_I_- Fot

_ [[ a¢_(,o) t d2o (3S)
1./ an le- '_ol

in which t#_(_0) and a_ (co)an are the potentials and their normal derivatives on the

boundary surface respectively.

The pair of the wave equations (36) and (37).axe Klein-Gordon Equations with a

friction force represented by the term involving the first order derivative with respect to

time. The difference between two conjugate wave equations (36) and (37) is the sign of the

second restoring term dr: =F3 • V#v and the source terms appear on the, ±#vsv, present

on the right hand side of Eqs.(36) and (37). The structural similarity between the two

theories; RT and EM is the key feature of the present theory. Presently, however, the

functional interrelation between the properties of the two fields has not being indenti-

fled. Thus the complete similarity between two fields can not be fully established. It may

be mentioned, nevertheless, that there is an indirect method for the interrelation of the

energy-stress tensors of an electromagnetic field and that of a photon gas field. Such photon

gas-electromagnetic equivalence s has been established in the frame work of the relativis-

tidally covariant theory of photon gas conservation laws derived from the conservation of
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proper photon density. This latterequation corresponds to the covariant radiativetransfer

equation in a four-dimensional space.

Observation of Eqs.(36) and (37) reveals the following basic features. First, two

equations are reduced to a conventional wave equation when )3vvanishes. This isconsistent
/

with the well known resultof the propogation of an electromagnetic wave in a vacuum.

Secondly, in an optically thin medium, i.e.,_, << i restoring forces for two conjugate

waves are differentfrom each other depending on the sign of the gradient of/3v in the

direction of the propagation. For example, the coefficientof a restoringforce is positive

in the direction of the increasing 13,,.However in an opticallythick media _3v >> I, the

restoring force coefficientispositivefor two conjugate waves. Thirdly, an opacity retards

the wave propagation. Finally,the radiationpotential @_ isdegenerated by the sink _vSv

whereas it isgenerated by a source term /3vSL,for the @_" wave. Furthermore both _

waves are partiallygenerated by the source term proportional to the temporal variationof v

the gradient of an associated potential¢_ and the product of the opacity with the latter

quantity.

5. CONCLUSION

The potential theory of radiation presented in this paper provides a new physical

perception of the structure of a radiation fieldthrough the identificationof the basic

characteristicsof the irrotationa.lityof a spectral intensityvector. Scalax potential repre-

sentation of a radiation fieldallows a unique interpretationof the laws of radiativedecay,

effectsof the boundary values on the fieldvariables for the case of steady state, propa-

gation, retardation, a.swell as the generation of a radiation wave for unsteady radiation.

This preliminary theoreticaldevelopment is focused ,by design, upon a narrowly scoped

mathematical problem, and on the identificationof the basic commonality between radia-
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tire transfer azld electromagnetic theories. The comparative study yields a confirmation of

a structural similarity between two fields: radiation and electromagnetic . It is projected,

without proof, that the ultimate equivalence theory will serve to determine the validity

limit of the existing phenomenogical theory of radiative transfer. The results of such a

comparative study will serve to guide the formulation of a new radiative transfer theory.

I.a the mean time, the steady state potential equation seems to be a viable equation

for the prediction of radiation coupled problems because of its accuracy and elliptic type

o( equation. This formulation has not presently been applied in modern CFD calculations.

However, in view of an increasing interest in radiation phenomena in high performance

liquid rocket engines and hypersonic flows, the present method is recommended for further

advancement toward the numerical prediction of the radiation effects on a gas phase flow as

well as for spray combustion processes. This potential method is also expected to provide

a unique mathematical tool for the prediction of the radiation fields of various geometrical

objects. Such options should be explored to enhance the radiation modelling activity.

Finally, the unsteady radiation phenomena is a largely unexplored area. The effects

of highly pulsed radiation on propellent heating, vaporization and ignition have a practical

,_i_:nificance on the engine start-up and instability of liquid rocket engines.
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